22 research outputs found

    A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms

    Get PDF
    Abstract Matrix metalloproteinase 9 (MMP‐9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype‐based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP‐9 rs20544 C/T single‐nucleotide polymorphism (SNP) located in the 3â€Čuntranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP‐9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP‐9 3â€ČUTR. We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP‐9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis‐related locomotor hyperactivity in Mmp‐9 heterozygous mice. We propose a novel mechanism that involves MMP‐9‐dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP‐9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Ragweed plants grown under elevated CO<sub>2</sub> levels produce pollen which elicit stronger allergic lung inflammation.

    Get PDF
    Background Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated.Methods Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2-pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2-RWE were investigated using ELISA and untargeted metabolomics.Results In vivo, CO2-RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1 beta, and IL-6). In contrast, supernatants from CO2-RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2-RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs.Conclusion Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites

    IL-10-producing B\ua0cells are characterized by a specific methylation signature

    No full text
    Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methyla- tion proïŹling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 producers are instead characterized by a delayed IL10 regulatory region (dIL10rr), a partially demethy- lated DNA portion located 9 kb upstream from the TSS. A demethylated region was also found in human IL-10-producing B cells and, very interestingly, in some B-cell malignan- cies, such as chronic lymphocytic leukemia and mantle cell lymphoma, characterized by an immunosuppressive microenvironment. Our ïŹndings deïŹne murine and human regulatory B cells as an epigenetically controlled functional state of mature B cell subsets and open a new perspective on IL-10 regulation in B cells in homeostasis and disease

    Tacrolimus Inhibits NF-ÎșB Activation in Peripheral Human T Cells

    Get PDF
    <div><p>The calcineurin inhibitor, tacrolimus (TAC), inhibits the protein phosphatase activity of calcineurin, leading to suppression of the nuclear translocation of NFAT and inhibition of T cell activation. Apart from NFAT also the transcription factor NF-ÎșB plays a key functional role in T cell activation. Therefore, blockade of the NF-ÎșB activation cascade by immunosuppressive drugs prevents immune activation. Here we studied whether TAC blocks NF-ÎșB activation in peripheral human T cells. After anti-CD3/CD28-activation of T cells from healthy volunteers, NF-ÎșB (p65) phosphorylation was measured by flow cytometry in CD3+ T cells, CD4+ helper T cells and CD8+ cytotoxic T cells in the absence and presence of TAC 10 ng/mL, sotrastaurin 500 nM (positive control) and mycophenolic acid 10 ”g/mL (negative control; n = 6). NF-ÎșB transcriptional activity was measured by ELISA and intracellular TNFα protein, a downstream target, was measured by flow cytometry to assess the functional consequences of NF-ÎșB blockade. Anti-CD3/28-activation induced NF-ÎșB phosphorylation in CD3+ T cells, CD4+ T cells and CD8+ T cells by 34% (mean), 38% and 30% resp. (p<0.01). Sotrastaurin inhibited NF-ÎșB activation in the respective T cell subsets by 93%, 95% and 86% (p<0.01 vs. no drug), while mycophenolic acid did not affect this activation pathway. Surprisingly, TAC also inhibited NF-ÎșB phosphorylation, by 55% (p<0.01) in CD3+ T cells, by 56% (p<0.01) in CD4+ T cells and by 51% in CD8+ T cells (p<0.01). In addition, TAC suppressed NF-ÎșB DNA binding capacity by 55% (p<0.05) in CD3+ T cells and TNFα protein expression was inhibited in CD3+ T cells, CD4+ T cells and CD8+ T cells by 76%, 71% and 93% resp. (p<0.01 vs. no drug), confirming impaired NF-ÎșB signaling. This study shows the suppressive effect of TAC on NF-ÎșB signaling in peripheral human T cell subsets, measured at three specific positions in the NF-ÎșB activation cascade.</p> </div
    corecore